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An analysis is presented of the motion of a turbulent thermal in an unstratified 
environment. Although based upon the entrainment hypothesis introduced by 
G. I. Taylor (seeMorton, Taylor &Turner 1956)) the analysis differs from previous 
work in that it is not limited to small density differences between the thermal 
and its surroundings. Also, the influence of the virtual mass of the unsteadily 
moving fluid, ignored by previous investigators, is included and shown to be of 
significance for any density difference. 

Calculations of the temporal variations of size, velocity and density are pre- 
sented in non-dimensional form for thermals with initial density ratios covering 
the practically attainable range. It is shown aposteriori that losses of momentum 
and buoyancy to a wake are probably of negligible influence in any real case. 

1. Introduction 
The present work was motivated by a clear inconsistency in previous models of 

turbulent thermals. The difficulty is most obviously revealed in the recent 
publication of Wang (1971), which was based on the concepts discussed in the 
now classical paper by Morton et al. (1956). In  the former paper it is claimed 
that the analysis presented is valid for any value of the initial ratiop,/p, between 
the densities of the thermal ( p o )  and its environment (pa). As this ratio approaches 
zero, the initial motion should be the same as for the classical case of a light 
sphere rising in a fluid of large density. That is, the initial acceleration of the 
sphere should be 29 (Milne-Thompson 1967), g being the gravitational accelera- 
tion, whereas Wang’s analysis gives an initially infinite acceleration. Appealing 
to an entrainment of ambient fluid cannot explain the discrepancy. The real 
reason for the difficulty is quickly found by inspection of the momentum or 
impulse equation used by previous investigators of this problem. In all cases, the 
virtual masst of the unsteadily moving thermal has been ignored.$ As we shall 
show, when the influence of the virtual mass is taken into account, an internaIly 
consistent model results. We also find that it is possible to obtain an explicit 
analytical solution to the problem under conditions which are not unduly re- 
strictive even in the limit of very large or small values of po/pa. The necessary 

t Variouely called apparent mass, added mass, virtual inertia, inertial coefficient. 
$ Although Turner (1967, 1963) has included it in analyses of some related problems, 

end has recently (Turner 1973) revimd the model equations for the thermal problem to  
account for the virtual-mass offect in the limit of small density differences. 
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physical assumptions are discussed in some detail as are some of the implications 
of the model when applied to laboratory and large-scale thermals. 

2. Theory 
In order to present the theory as clearly as possible, the principal physical 

hypotheses of the model will be listed here and discussed in more detail later. 
These assumptions are essentially the same as those adopted by Morton et al. 
(1956). 

(i) There is no loss of momentum from the thermal to a wake: this is equivalent 
in Wang’s (1971) model to taking C& = 0. 

(ii) There is no loss of buoyancy from the thermal, either to a wake or, in the 
case of a hott thermal, by radiation of thermal energy to the surroundings. 

(iii) Ambient fluid is entrained into the thermal at  a rate proportional to its 
surface area and velocity. The constant of proportionality a is an entrainment 
coefficient with a constant value for any given thermal. 

(iv) The thermal has an initially zero impulse and a spherical shape, of radius 
a(t), and all fluid and flow properties are uniformly distributed within it. 

(v) The thermal and its surroundings are composed of fluids miscible in all 
proportions. 

(vi) Buoyancy is conserved during the entrainment process. This requirement 
is satisfied, for example, when the ambient fluid is of uniform density and the 
mixing process adiabatic and isobaric. The kinetic energy of the thermal is small 
compared with its total enthalpy. 

Detailed discussion of the assumptions is given in Q 4. 
It is convenient to start the analysis with the momentum equation, the correct 

form for which is 
d[$7ra3(p + kp,) u] /d t  = $7ru3(p, - p )  g = +nF, (1)  

where k is the inertial coefficient for the thermal and u its velocity. The buoyancy 
force F is here assumed to be constant, and so 

p = al(pCc --Po) q. (2) 

Equation (2) may be used to determine the initial radius a, when the initial 
density p, is known, e.g. for two gases with a common specific heat cp 

= 3 f Z J 4 ~ ~ 9  TOo(pco -PO) ,  (3 )  

where H,, is the total amount of thermal energy deposited in the thermal at  t = 0 
and T, is the ambient temperature. 

In  (l), the expression in the square brackets (with k = 4) is the correct form 
for the equivalent impulse of a sphere when its density differs from that of the 
surroundings, and reduces to the value 27ra3pu as p+pm (Batchelor 1967, 
p. 526). With the exceptions notedin the second footnote on page 541, the inertial 
coefficient has been implicitly taken as zero in previous work. 

t The term ‘thermal’ is used to connote a mass of fluid possessing buoyancy (a donsity 
difference) with respect t o  its surroundings, whether as a result of differences in temperature, 
molecular weight (for gases) or concentration of a solute (liquids). 
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Since F is constant, (1) can be integrated immediately to give 

when u(0) = 0. This result is the same as that which may be obtained for a rigid 
sphere of constant mass, although now p is a function of the time t as a result of 
entrainment, by the thermal, of fluid of density pa. It may be noted that for 
p p,, the case studied by Wang (1971), very large errors are introduced by 
setting k = 0, and even for the situation considered by Morton et al., when p M p,, 
the neglect of the virtual-mass term cannot be justified. 

The mass conservation equation makes use of the entrainment assumption, 
and is 

d(pa3)ldt = 3apma21uI, 

wherein we take account of the fact that the rate of entrainment is always 
positive, whether u is positive (upwards) or negative (downwards). 

From (1) we have p d  = paa3 - F/g,  so that ( 5 )  can be simplified to give 

aapt = a l u l ,  ( 6 )  

a-a, = alxl, (7) 

from which, since u = dzldt, we have the result 

where z is the axial distance from its origin to the centre of the thermal at any 
time and a, = a(0). Equation (7) represents the expected result that all turbulent 
thermals (in unstratified surroundings) have a spreading angle 2 tan-1 a, re- 
gardless of the initial density difference A,.? Substitution for u fro m (4), and for 
p from ( l ) ,  permits (6) to be integrated to give 

~pm(l+k)(a4-u,4)-(F/g)(a-a0)  = +a;ollFlt2. (8) 

This equation shows the important result that the spreading rate depends not 
only upon the magnitude IF1 of the buoyancy force, but also upon the sign of 
the density difference through the term F/g ( = a”,p, -po))  : it is this feature which 
distinguishes between the motion of heavy and light thermals. 

By introducing a, as a characteristic length of the problem, (8) can be made 
non-dimensional, and a characteristic time t, appears: 

t(i+ k) (54- 1) - ~ ~ ( a -  1) = p, (9) 

wherein a = a/a,, A, 3 1 -po/p, and f = t/tc with t, = (a,/ag/Ao()-k. 
(1 - p/p,)/A, and a characteristic velocity u, a8 If we define 

uc = ao/atc = (ga,lA,l/4+ 
then from (l), 

and from (4), 
A = q i z 3  

;ii& = i? 

uc ( l + k ) a 3 - A O ’  

t See, however, the discussion of $4. 
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It is also useful to calculate the product ;liZ since it represents the behaviour 
of the circulation, Reynolds number (ua/u) and, as we shall show, the magnitude 
of the momentum loss to a wake ($4). 

In  the non-dimensional set of implicit equations for si, Ti, d and ii as functions 
off, only A, appears as a parameter, and a knowledge of only u,, A,, and CL. is 
required to find the behaviour of any given thermal in terms of the physical 
variables a, u, p, x and t.  

Equations (9), (11) and (10) have asymptotes for short and long times as 
follows. 

Xhort times: (a- 1) Q 1. 

a w  1. 
- f 
U Z  

f2 

2( 1 + k) - A,’ 
si-1 w 

l+k-A,-,’ 

Long tim.es: G 9 1. 
f-4 

d w [*( 1 + k)]% f-8. - tt - 
a*- 

2 ( 1 $ k ) t ’  % 22(1+k)4’ 

Evidently the short-time asymptotes correspond to the thermal’s acceleration 
period, and the long-time asymptotes to its deceleration phase. 

The principles used above to analyse the motion of a spherical thermal have 
also been applied to the case of the line thermal. An outline of this analysis is 
given in the appendix. 

3. Results 
The variations in si, Ti, A and EZ with f, as represented by (9)-( ll), are plotted 

in figures 1 (u)-(d), together with the asymptotes for short and long times, for 
a range of practical values of A,.? It is evident from these figures, and also the 
long-time asymptotes, that the motion of all thermals is eventually independent 
of A,. Initially, however, all thermals pass through an acceleration phase which 
is A, dependent. The acceleration phase terminates, typically, at a value off  
between 0-1 and 0.5, and there is then a transition region lasting until i? NN 2 or 3 
before the thermal enters its retardation phase. This sequence is essentially that 
described by Wang (1971), except that his numerical values for the velocity u 
are much larger than ours. As was pointed out earlier, for A, = 1, his acceleration 
phase has infinite velocities, and even for A, = 0.9, which is typical of his ex- 
periments, Wang’s theory gives velocities a full order of magnitude larger than 
those we find. Even the final asymptote for u is higher because of the neglect of 
the virtual mass, Wang’s analysis giving Zfg = 2-8 compared with our value of 
(3)t 2 4 .  Further comments on this and some experimental studies are postponed 
until $4 .  

One would like to be able to decide at  what stage of any experiment the thermal 
has reached its final asymptotic state. A statement in terms of f is difficult to 
transfer immediately into physical terms. An easier interpretation results from 
consideration of the thermal’s growth. For values of [Ao/ < 1, the h a 1  stage is 

t A table which includes values of A, and other parameters of interest is given in $4. 
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FIGURES 1 (a, b) .  For legend see next page 
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10-1 T 
FIGURE I. Variation of (a) thermal size, ( b )  thermal velocity, (c)  thermal density and 
(d )  thermal circulation with time. - - - , short-time asymptote; -.-. , long-time 
asymptote . 

reached when the thermal has grown to approximately twice its original diameter. 
For A, z - 10, the criterion is ./ao M 4, for A, = - lo2 the value is 6.5, and for 
A, = - lo3 it is 15. 

4. Discussion 

upon which we have based our analysis of the motion of a turbulent thermal. 
We start the discussion by considering in order the assumptions listed in Q 2 
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FIGURE 2. Schematic diagram to illustrate processes of entrainment and wake formation. 

We can estimate the loss of impulse to a wake in much the same way as that 
described by Maxworthy (1972a) in his discussion of a laminar vortex ring. 
A sketch of the mixing and wake-forming process is shown in figure 2 for the 
present case of a turbulent thermal. By estimating the momentum loss from the 
mixing region as vD pa,na2u2,t we find that the ratio of the buoyancy force to 
the drag force becomes 

It may be seen from figure 1 (d )  that the maximum value of Z2Z2 is close to the 
asymptotic value of Q (for - A. 9 1, E2Z2 has a peak value slightly greater than 
this), and the value of a! is typically t. Wang’s (1971)  estimate for C, is certainly 
exaggerated: the flow around the thermal is not separated and the mechanisms 
producing vorticity in the wake are weak since they do not occur at a solid 
surface, but at  a moving fluid interface. We estimate CD to have a value some- 
where between 10-1 and 10-2, with no chance that it is as large as the value 0.23 
associated with turbulent separation from a solid sphere (Maxworthy 1969). Even 
with the largest reasonable values of CD and ‘ii282, the ratio given above exceeds 
20, which we can safely say is large and so ignore the drag force in the momentum 
equation (1). It is easily shown, however, that the asymptotic dependence on t 

f Our drag coefficient CD is not to be confused with Wang’s CD,  which also includes 
an ‘effective drag’ due to entrainment of ambient fluid, an influence taken explicitly 
into account in our form of the equations. We use OD in much the same way as he uses Ck. 

8a!/3CDu2a2. 

35-2 
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(for both long and short times) is unaffected by the presence of even a large drag 
force. For long times the flow remains similar, with the thermal and its wake 
sharing the buoyancy force in constant proportions. 

So far as the second assumption is concerned, for a hot thermal, there are two 
possible modes of buoyancy loss. If the internal temperature is very high, thermal 
radiation will be important during the early stages of the motion, though the 
data of Lin, Tsang & Wang (1972) suggest that the radiation phase will be over 
well before one characteristic time has elapsed. Thus one might reasonably 
assume that the initial enthalpy H, to be used in any calculation should be taken 
as that due to the original heating process less the amount corresponding to an 
almost instantaneous loss by radiation. 

A much more serious difficulty is that associated with the loss of buoyancy to 
a wake. Available evidence (Maxworthy 1972a; Lin et al. 1972) suggests that 
such a loss may occur. However, experimental observations indicate that 
buoyancy thus rejected during the initial stages of growth in fact may catch up 
with the thermal as the latter rapidly slows down and, under some circumstances, 
may be re-entrained. The exact conditions under which this can occur are unclear 
at  the moment. If we assume that re-entrainment does not take place, then the 
ratio of the buoyancy loss to the initial buoyancy can be estimated in a manner 
similar to that described above for the impulse, and is found to be 

(ya) C*[a2udf].~ 

Values of the quantity in square brackets occurring during the initial phase 
are typically of order iO- l ,  and since crude estimates from published observations 
show that only a small part of the initial buoyancy is lost during this period, 
we suggest that C, is of order During the latter phase of the motion, the 
value of Z 2 E a f  reaches a constant value of 0.5. Thus the total loss of buoyancy 
to the wake is undoubtedly small, even in the absence of re-entrainment. 

A more complete analysis than that discussed here, which accounts for losses 
to a wake of mass, momentum and buoyancy, will be attempted at a later date. 

The third assumption, relating to the entrainment coefficient a, is the most 
difficult to deal with since it contains all of the details of the complex turbulence 
processes which are such a characteristic feature of thermal motions. Until now, 
most investigators have assumed that a has a constant value close to  0.25. A 
search of the available literature, together with our own observations, suggests 
that a may be a function of the initial density difference parameter A,,$ and 
also of the detailed nature of the initial conditions under which a given thermal 
is formed. The spreading rate of any thermal, and so the coefficient CL, seems to 
depend critically upon the way in which it becomes organized, for example by 
starting ‘cleanly’, or by being given an initial impulse. Examples of the latter 
are afforded by buoyant vortex rings, which exhibit the highest degree of 

t 0, is a small coefficient (cf. a drag coefficient) which measures the effectiveness of  
the loss process. 

$ Dr J. 8. Turner (private oommunication) has suggested that u might be a running 
variable dependent upon the local value of A. Existing experiments are not sufficiently 
complete to test this point. Current experiments in our laboratory give major emphasis 
to it, however. 
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organization, and the thermal produced as a result of an explosion close to the 
ground. The experiments of Fohl (1968) for helium releases in air (4, M 0.85) 
show that the best organized of his thermals had values of a M 0.08, while small 
changes in the initial conditions increased this to as much as 0.17. Scorer’s 
(1957) thermalswitha, M - 0-15gavevaluesof aintherange0.2-0.35, andshowed 
little evidence of being well organized except for a tendency to a ring-like con- 
figuration during the final stages of their travel. Msxworthy (1972 b)  found that 
it was possible to organize thermals in the same range of density defect as 
Scorer’s by giving them an initial circulation greater than the h a 1  asymptotic 
value appropriate to their buoyancy. These thermals behaved initially like 
non-buoyant vortex rings but eventually approached an asymptotic state with 
u N t-* and a value of a x 0.01. Thermals formed in this way were stable even 
though the heavier fluid was located on the inside of the ring in a position one 
might have thought to be centrifugally unstable. By contrast, in the case of 
A, z 1 (e.g. Fohl 1968), we should expect the ring to be centrifugally stable. 
Future experiments are planned for thermals with large negative values of a,, 
for which we anticipate that the centrifugal instability will overcome the stabiliz- 
ing effect of the core rotation and that a rapidly spreading non-organized flow 
will result. 

The preceding conclusions, regarding the dependence of a upon initial con- 
ditions, are unfortunate for a hopefully predictive theory, since these are rarely 
subject to precise control, even under laboratory conditions. 

The next point to be discussed was raised by Dr J. S. Turner, in private oorre- 
spondence, and concerns the similarity assumption that we have made. Essen- 
tially he believes that similarity cannot exist during the initial acceleration phase 
of the motion since the turbulence production mechanisms have then had in- 
sufficient time to produce an entraining interface (Turner 1973, pp. 187, 196). 
This view is shared by Morton (1968). To us it seems that the answer depends 
upon the degree of abstraction one is willing to ascribe to a model. Thus, if one 
could produce experimentally a perfectly smooth non-turbulent fluid sphere, 
with zero initial impulse, then Turner’s criticism would have validity. However, 
real experiments can never do this: turbulence is always produced both by the 
starting process and by the growth, due to buoyancy, of short wavelength dis- 
turbances on the thermal’s surface. All of the experiments we know of show that 
this initial turbulent field persists through the whole range of motion. Although 
it may be argued that this initial turbulent field cannot be in a similar state, and 
there may be a time lag between the turbulence and the mean motion, to the 
accuracy that one can do experiments this subtlety is lost and practically the 
thermal acts as if it were similar with a constant value of a. In particular, we 
have taken measurements from Scorer’s (1957) published photographs and found 
that the growth rate was linear through the whole range of motion, including the 
acceleration and transition phases. 

Finally, some comments are in order regarding our assumption that the thermal 
is spherical in shape, and that the appropriate value for the inertial coefficient 
k is +. In  many experimental situations (e.g. Fohl 1968; Wang 1971) it is 
observed that, after the first few diameters of its travel, the thermal takes on 
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A0 a0 01 t c  uc 

Experiment (m) (4 ( 4 s )  
Metal particles/H,O - 10 0.01 0.25 0.02 2.0 
Ba,SO, and NaCl/H,O -0.15 0.05 0.25 0-35 0-5 
(Scorer 1957) 

Helair (Fohl 1968) N 1 0.02 0.1 0.15 1.4 

H.E. detonation - 1  10 0.1 3 30 

Trinity explosion N 1 300 0.1 15 150 

17 KT 0.25 11 110 

Hot air (Wang 1971) - 1 0.01 0.25 0.2 2.0 

(estimate) 0.25 2 20 

(Taylor 1950) 

t 1 atmospheric scale height x 8 x lo3 m. 

4 
2 

2 

16 
8 

20 
8 

20 
8 

20 

8 

0.4 
0.8 

200 
80 
6 x lo3? 

2.4 x 103 

TABLE 1.  Values of thermal parameters for laboratory and field experiments 

the shape of an oblate spheroid with eccentricity e M 0.1. It is easily shown, 
however, that, for such a small eccentricity, both the inertial coefficient and the 
factors relating to the geometry of the thermal differ negligibly from the corre- 
sponding values for a sphere (Milne-Thompson 1967, p. 501). Also, it is probable 
that in the case of an entraining sphere the external inviscid flow may be dif- 
ferent from that around an impermeable sphere. Thus the value of k will depend 
to some extent on the entrainment rate, although this again is regarded as an 
effect beyond the accuracy of experiments. 

The results reported in $0 2 and 3 are largely self-explanatory, and attention 
will be drawn to only a few points of particular importance. Table 1 shows 
application of the computed results to some typical experiments, both extant 
and planned. It includes the effect of different values of a, A,, derived quantities 
such as t, and u,, and the values of a and z at which the final asymptotic stage is 
reached. 

It is a direct consequence of the entrainment model adopted here, and by 
other investigators, that thermals grow linearly with x at all times. Thus the 
existence of a linear growth in an experiment, whilst it  does give the value of a, 
is in no sense a test as to whether the final asymptotic state has been reached. 
Only more detailed measurements of a or u or p as functions of t can provide 
this indication. In  particular, the last column of table 1 suggests that great care 
should be exercised in the interpretation of experimental data in terms of the 
asymptotic behaviour for long times, since the size of the experimental apparatus 
is often of the same order of magnitude as z,. 

Our treatment provides a logical explanation for the frequently quoted state- 
ment that light thermals behave in a different way from heavy ones. Equation (4) 
shows explicitly that the effects of A, are not symmetrical about A, = 0, and 
that light thermals will always have an initial acceleration larger than heavy 
ones (e.g. for IAol = 1, the ratio is 5) .  

We gratefully acknowledge the generous support of this work by the AFOSR 
under grant 72-2400 (M.P.E.) and the NSF under grant GK-19107 (T.M.) 
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Appendix. Line-thermal analysis 
The analysis follows closely that given in 3 2 for the spherical thermal. Accor- 

dingly the equations are written down here with a minimum of comment (the 
equation numbers have a one-to-one correspondence with those in the main body 
of the text). 

The momentum equation is 

d[na2(p +pa) .]/at = na2(pm -p )  g = T F ,  (A 1) 

where p = - P o )  g (A 2) 

and a; 5 H o / n c J m ( P m - P o ) .  
Integrate (A 1) to find 

The mass conservation equation is 

From (A 1) 

and (A 5) may be simplified to give 

from which 

pa2 = p,a2 - F/g 

da/dt = aIuI = aldz/dtl, 

a--ao = alzl. 

Substitute in (A 6 )  for u from (A a), and for p from (A I), and integrate to find 

Q m ( a 3 -  a!) - (F/g) (a - a,) = &+‘I t2.  (A 8) 

I n  non-dimensional form 
3(Z3 - 1) -A,@ - 1) = &P. 

The definitions of all non-dimensional variables and of the characteristic time 

From (A 1), 

and from (A 4), 

and velocity are the same as for the spherical thermal. 

A = 1/82, (A 10) 

(A 11) 
- 
u = f / ( 2 2  - Ao). 

Xhort-time asymptotes: (8- 1) 4 1. 

A %  1. 
- $2 - f 
a-1 x U Z -  

2(2 - A,)’ 2 - Ao’ 

Long-time asymptotes: B 1.  
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